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Abstract

Point pattern analysis (PPA) has gained momentum in archaeological research that models large-scale 
distributions of sites and explanatory covariates. As such, there has been increased interest in the bias 
of archaeological distributions, which mostly have an impact due to modern land-use change. These 
interactions, however, have not yet been fully explored. In order to better understand archaeological 
point patterns as functions of explanatory covariates, we offer three different approaches: (i) 
environmental preference modelling of archaeological records in different chronological phases; (ii) a 
custom bias surface that represents the variability of the regional landscape; (iii) an R-package (rbias) 
allowing the generation of a fuzzified bias surface based on Open Street Map (OSM) data. 

Keywords: Quantitative Archaeology, Spatial Modelling, Environmental Archaeology, Landscape 
Archaeology, Roman.
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Resumen

El análisis de patrones de puntos (PPA) ha cobrado impulso en la investigación arqueológica en el 
modelado de las distribuciones a gran escala de sitios y las covariables explicativas. Se ha puesto 
más interés en el sesgo de las distribuciones arqueológicas, que en su mayoría impactan por el 
cambio moderno en el uso de la tierra. Estas interacciones, sin embargo, aún no se han explorado 
completamente. Presentamos tres enfoques diferentes para comprender los patrones de puntos 
arqueológicos como funciones de covariables explicativas: (i) modelado de preferencias ambientales 
de registros arqueológicos en diferentes fases cronológicas; (ii) una superficie de sesgo personalizada 
que representa la variabilidad del paisaje regional; (iii) un paquete R (rbias) que permite generar una 
superficie de polarización difusa basada en datos de Open Street Map (OSM).

Palabras clave: Arqueología cuantitativa, Modelización espacial, Arqueología ambiental, Arqueología 
del paisaje, Romano.

1. INTRODUCTION

Quantitative, digital statistics, and spatial analyses are common tools in 
archaeological research that focuses on the recognition of patterns in past societies’ 
behavior and particularly settlement distribution and land-use (Brandolini and 
Carrer, 2021; Carrero-Pazos et al., 2019; Gillings et al ., 2020; Kempf, 2020d, 2021; 
Kempf and Günther, 2023; Verhagen and Whitley, 2012). In this context, the use of 
point pattern analysis has become increasingly important to understand the spatio-
temporal components behind the socio-cultural, political, and ecological driving 
factors that control individual and group decision-making processes (Bevan, 
2012; Crema et al., 2010). Eventually, the immediate landscape affordances, which 
comprise the potential and actual opportunities and propositions offered by the 
socio-ecological setting of the locale and the human being interacting with them 
in the moment of mutual confrontation, has entered the discussion (Gibson, 1979; 
Kempf, 2020b, 2020c; Knappett, 2004). If affordances emerge from a confrontation 
between a strategic human actor and an environmental feature with particular 
qualities, statistically identified spatial associations between archaeological sites 
and environmental features can be interpreted as evidence for the existence of 
such affordances, and therefore for the social context that shaped the human side 
of the human-environment confrontation.

However, a significant methodological problem hinders the use of this type of 
analysis for understanding the past: bias in the distribution of archaeological sites 
caused by formation processes. Formation processes include the processes that 
mediate the deposition of material traces by ancient humans, the transformation 
of those traces after deposition, and the discovery of those traces in the present 
(Schiffer, 1996). These processes all but guarantee that the sites we record in the 
present are not a random sample of the activity areas that constituted ancient 
landscapes. The problem is even more acute when we base our analyses on 
legacy data. When working with old survey data, one can consider the survey 
methodology and test for the resulting biases (Casarotto et al., 2018; Purtill, 2022). 

The problem becomes more complicated when analyzing data that was 
not collected as part of a single project. Many countries now maintain national 
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databases of archaeological sites. This data has usually accumulated over many 
years in a piecemeal fashion with no consistent collection methodology (Cowley, 
2016; Kempf, 2021; Kreiter, 2021; van Leusen, 1996). This poses a major challenge 
for researchers because it is very difficult to control for the biases that must 
necessarily shape the distribution of sites in these databases. At the same time, 
these databases often include huge numbers of sites over very large areas, far in 
excess of what could be obtained by a single survey. Although problematic, the 
scale of these datasets means that they have the potential to provide evidence 
for much larger groups of people and larger-scale social processes than any 
individual survey project ever could. To realize that potential, we must devise 
ways of identifying and controlling for the biases that plague them. This article 
offers a way of identifying and controlling for biases arising from one type of 
formation process: discovery. It is not a complete solution to the problem of bias in 
large, cumulative, legacy data sets, but we think that it proves a useful tool upon 
which others can build. We provide two different approaches to bias detection in 
a regional case study in eastern France (Alsace). Focusing on the transitions from 
pre-Roman to the Roman period and to post-Roman chronology, we assemble a 
large number of archaeological sites of various origin to measure environmental 
landscape transformation processes as well as the impact of modern land-use and 
landcover change. We build on the statistical methods described in Kempf (2020) 
and (2021) and Kempf and Günther (2023) and test the infrastructural bias by 
applying the recently developed R-package rbias, which ultimately is designed 
for this purpose (Günther et al., 2022; Kempf and Günther, 2023). 

2. MATERIAL AND METHODS

We begin from the premise that it is not actually possible to “unbias” the 
archaeological record through data manipulation (van Leusen, 1996). Instead of 
trying to manufacture an archaeological dataset that is a representative sample of 
the ancient landscape, we manufacture a comparative dataset that is biased in the 
same ways as the archaeological record. Statistical identification of associations 
between archaeological sites and environmental features relies on a null 
hypothesis that the archaeological sites are randomly distributed with respect to 
those features. But this is a proxy for the null hypothesis that scientists interested 
in past behavior actually want to test: that the (ancient) places that produced 
the (modern) archaeological sites were randomly distributed with respect to 
those features. Cultural heritage management, of course, is more focused on the 
archaeological sites than the ancient places that produced them. This mirrors 
the distinction between predictive modeling (for cultural heritage) and location 
analysis (for historical research) (Verhagen, 2007; Verhagen et al., 2010; Verhagen, 
2018; Verhagen and Whitley, 2012; Verhagen and Whitley, 2020). A biased 
comparison dataset represents a situation in which ancient places exhibited 
complete spatial randomness, but then went through the same set of formation 
processes that lie behind the actual archaeological data under investigation. Here 
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we use one, very large comparison dataset because it makes it easier to compare 
variables with the environmental data, but many smaller comparison data sets 
could also be used. The key insight we propose that constructing a comparison 
dataset allows one to control for trends arising from the process of discovery and 
therefore more confidently identify trends arising from ancient behavior.

2.1. Pattern detection, scale, and inherent uncertainties

Pattern analysis becomes particularly useful if one aims at detecting 
development of human behavior in the landscape. One of the basic considerations 
in this approach is the a priori assumption of change over time, which can be 
attributed to changing environmental conditions, societal development, migration 
and mobility, or technological enhancement, innovation, and transformation of 
a socio-cultural system. A second pillar is the spatial extent of the study area 
and the scale of human-landscape interaction. The question of scale is twofold. 
First, the study area is limited by its subjective extent (e.g. a rectangle or modern 
administrative boundaries, mostly considered as bounding box or window of 
operation). which all too often ignores the large-scale ecological feedbacks and 
the supraregional administrative and political dynamics of cultural relations. 
Second, the individual scale of the human activity spheres, which determines the 
range of agricultural intensification or extensification, livestock breeding, market 
orientation, settlement dispersal, and general communication networks and 
exchange patterns.

The scale of human activity spheres depends on the life ways being practiced 
in general and on the particular activity under investigation. Subsistence strategies 
are particularly influential, and spatial analysis can provide evidence for which 
strategy was more common. Under an intensive agricultural regime, in which 
the goal was to maximize production through the investment of labor and other 
resources in cultivation, people should maximize their access to the environmental 
affordance of “fertile land”. The distance between settlement and field constrains 
the amount of labor one is able to invest in cultivation. Through cross-cultural 
ethnographic comparison, Chisholm showed that the amount of labor invested 
in fields declines sharply somewhere between one and two kilometers from the 
settlement (Chisholm, 1979 (2007)). Therefore, maximizing access to fertile land 
means maximizing the amount of fertile land within one to two kilometers of 
the settlement. Different approaches, however, have recently been emphasized 
for the construction of complementary regions around settlements, using various 
distance-based relationships. Most of them, however, were building on plain 
surfaces instead of integrating permeability or accessibility into the cost-distance-
expenditure calculation (Brönnimann et al., 2018; Depaermentier et al., 2020; 
Depaermentier et al., 2021; Kempf, 2020d). Under an extensive agricultural regime, 
the spatial relationship between the settlement and the field is less constraining, 
since less labor is invested. Extensive agriculturalists might still opt to live in 
places with fertile land nearby, but more distant places would be considered “close 
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enough”. Therefore, analysis of the immediate surroundings of settlements and 
how these change through time has the potential to yield evidence for agricultural 
intensification.

Disentangling the different types of spatial patterning requires the creation of 
a comparison dataset subject to the same biases as the archaeological record. This 
dataset consists of a weighted distribution of random points, with the likelihood 
of any given location receiving a point dependent on the biasing factors present. 
This comparison dataset represents the null hypothesis that behavior in the past 
was spatially random and that the traces left by that behavior have been subject to 
the formation processes affecting the observed archaeological record. Significant 
differences between this comparison dataset and a subset of the archaeological 
record (sites identified as Roman-period settlements, for example) are more 
likely to reflect real trends in ancient behavior than post-facto trends in formation 
processes.

There is a danger that certain behavioral trends will be obscured using this 
method when factors that affect the archaeological record as a whole also impacted 
ancient behavior. Forested areas, for example, might both obscure archaeological 
remains in the present and be less-densely populated in the past. Building an 
aversion to forested areas into the comparison dataset will make it impossible 
to identify a real aversion to these areas in the past. The results of analysis using 
this method will, necessarily, be incomplete. On the other hand, this could be 
seen as an advantage. When comparing chronologically and typologically 
specific subsets of the archaeological record (e.g., pre-Roman, Roman, and post-
Roman rural settlements) to a dataset reflecting tendencies that are common to 
the entire archaeological record, trends specific to the subset under consideration 
will be emphasized, making it easier to track diachronic change. In any case, by 
distinguishing between spatial patterns attributable to formation processes and 
those that are not, we strengthen the empirical basis for our interpretations of 
spatial patterning in the archaeological record.

2.2. Environmental settings of the study area

The study area covers a section of the French Upper Rhine Area (URA) from 
its southern border to 48.5° N and stretches over the current administrative Region 
Grand Est (formerly Region Alsace, Départment Haut-Rhin (68) and Départment 
Bas-Rhin (67)) (Fig. 1). It measures approximately 120 km north to south and 
around 50 km east to west, covering nearly 490,000 ha. The URA is characterized 
by broad agricultural cropland including vineyards, orchards, and increasingly 
monoculture maize cultivation. The particular topographic situation between the 
Vosges mountain range and the Black Forest supports low precipitation rates and 
a high drought and flooding vulnerability of the low-lying floodplain of the river 
Rhine, which is built of porous aquifer, sandy Quaternary gravel, and clayey and 
silty interspersed alluvial deposits (Averbeck et al., 2019; Carbiener and Schnitzler, 
1990; Erfurt et al., 2020; Kempf, 2018, 2019a, 2019b; Minářová et al., 2017b; Minářová 
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et al., 2017a; Preusser, 2008; Preusser et al., 2016; Rentzel et al., 2009; Schmitt et 
al., 2007; Stork and Menzel, 2016). Large parts of the slightly elevated Mesozoic 
outcrops, the alluvial river terraces, and the foothill area are loess-covered, which 
led to the development of fertile soils. These soils experienced intense agricultural 
exploitation since the Neolithic period (Blöck, 2016; Brönnimann et al., 2020; 
Faustmann, 2007; Kempf, 2018; Knipper et al., 2018; Koehler et al., 2013; Mischka, 
2007). Parts of the Alsatian floodplain are characterized by various tributaries to 
the river Rhine, which drain the URA in the northern direction. The river L’Ill 
forms a secondary floodplain with low-drainage velocity and an accumulation 
regime, which traps fine-grained sediment from the headwater streams of the 
Vosges drainage system. Consequently, Gleysols and Alluvisols developed over 
clayey deposits with an increased waterlogging sensitivity. In combination with 
precipitation anomalies, a high aquifer and increased melt-water discharge can 
lead to rapid waterlogging and extensive flooding of broad parts of the floodplain 
(Giacona et al., 2018; Himmelsbach et al., 2015a, 2015b; Kempf, 2019a, 2019b, 2020c; 
Martin et al., 2010). On the other hand, during increased summer temperature and 
precipitation decrease, the region suffers from long-term hot drought periods, 
which impacts the natural and human-made ecosystem (Blauhut et al., 2015; 
Erfurt et al., 2019; Kempf and Glaser, 2020).

Figure 1. Topographic and hydrologic settings of the study area in Central Europe. The 
Alsace (shaded black area) is located at the eastern French border facing western Germany 

62



 
Michael Kempf y Elis J. S. Weaverdyck

Vegueta, 23 (1), 2023, 57-95. eISSN: 2341-1112

and northern Switzerland and aligns with the river Rhine at the eastern margins. The 
hydrologic system is controlled by the river Rhine and the river L’Ill run-off systems 

draining the Upper Rhine Area to the north. 

2.3. Archaeological data 

Archaeological data is drawn from the French national archaeological 
database, Patriarche, specifically, the datasets patriarche 67 and patriarche 68, which 
were uploaded to ArkeoGIS in 2016 (www.arkeogis.org; Dr. Loup Bernard, 
University of Strasbourg). Together, these datasets consist of 8136 records in 
2396 unique locations, with information on location, chronology, typology, and 
research history. From these records, we extracted 799 archaeological sites that 
represent the locations of ancient and medieval rural settlements (Fig. 2). The 
study area is eventually determined by the extent of the archaeological coverage 
of the database. That means that our analyses are limited and biased a priori by the 
subjective delineations of the archaeological distribution and political boundaries. 
However, to integrate larger environmental feedbacks into the analyses, we 
included groundwater variability as a proxy for superregional climatic and 
environmental feedbacks. These dynamics mirror the broader ecological drivers 
behind settlement and land-use dynamics in the URA.

2.3.1 Archaeological data subsets

Assigning chronological classifications to these settlements was not 
straightforward. Chronological data are recorded in two columns: starting period 
and ending period, both of which are populated by a wide chronological range. 
Therefore, we were forced to use an extremely coarse chronological scheme: 
Pre-Roman, Roman, and Post-Roman. Pre-Roman settlements are those with a 
starting period prior to the turn of the era. None of these had an ending period 
that stopped before 26 BCE. Roman settlements are those with starting or ending 
periods that encompass the first five centuries CE, including the so-called 
Migration Period, which is basically a historical construction and does not reflect 
local rural settlement development (Brather, 2008). Post-Roman settlements have 
either a starting or ending period of 450-999 or 450-1491 CE. With such vague 
chronological data, only the broadest trends will be visible. However, such 
imprecision allows us to include every rural settlement in the database. If we 
were to restrict our focus to well-dated settlements, not only would our sample 
size be radically decreased, but we would run the risk of biasing our sample. 
Settlements whose inhabitants consumed more durable goods, especially if 
these goods were imported or of high quality, are more likely to yield datable 
archaeological evidence.

63
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Figure 2. Site distribution of archaeological subsets and comparison dataset in the study 
area. Background is visualized by topography and hydrologic system.
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2.3.2. Comparison bias surface and dataset

Spatial associations between archaeological sites and features in the 
landscape can provide valuable evidence about ancient societies, but to be a 
sound basis for inference, it is necessary to test any observed association against 
the null hypothesis that the association is the product of random chance. This 
can be done by creating a comparison dataset of random points and comparing 
the association between these random points and environmental features with 
the association between archaeological sites and the same features. However, 
due to the influence of formation processes affecting archaeological preservation 
and discovery, even a random distribution of activity areas in the past would not 
produce a random distribution of archaeological sites in the present. Therefore, 
the comparison dataset should be distributed to reflect the same factors that affect 
the distribution of all archaeological sites. 

In this study, we focus on formation processes that affect discovery rates. 
We begin by examining the impact of modern land cover, since different types of 
landcover can preferentially conceal or expose archaeological remains to modern 
observers. Of course, landcover is not static, and the study area experienced 
considerable landcover change, deforestation and built-up change during the 
past decades (Kempf, 2020c). These areas have been subjected to intensive human 
attention, usually involving clearing and digging operations and, especially 
since 1992, commercial archaeology, which is an essential part of the Alsatian 
archaeology since 1941, when the Carcopino Law (confirmed in 1945) introduced 
the authorization and supervision of excavations by the French government and 
made the reporting of finds obligatory. The Association pour les fouilles archéologiques 
nationales (Afan) was founded in 1973. In particular, it administered the funds 
of the Ministry of Culture for planned and rescue excavations and carried out 
the measures. From the beginning, Afan established itself as an unavoidable 
intermediary of the government. Antea Archéologie was founded in 1998 and was 
the first French private company for preventive archaeology, licensed in 2005. The 
Law on Preventive Archaeology, approved on January 17, 2001, introduced a fee 
to finance preventive archaeology diagnoses and excavations. It has its legal basis 
in the European Convention for the Protection of the Archaeological Heritage, 
signed in Malta on January 16, 1992. The law established the Institut national de 
recherches archéologiques préventives (Inrap). which was created on February 1, 
2002. It is a public administrative institution that replaced Afan. The Archéologie 
Alsace (AA, formerly known as PAIR) exists since 2006 and was created by the 
desire to have a preventive archaeology for the whole region Alsace (including 
Haut-Rhin and Bas-Rhin). AA has a scientific, cultural, and didactic function to 
save, study, protect, and promote the cultural heritage (Antea, 2022; Archéologie 
Alsace, 2022; Inrap, 2016). Human interventions such as digging are likely to 
reveal archaeological sites, and these institutions ensure that practically all 
archaeological sites discovered in this way appear in the national archaeological 
database. Therefore, in addition to landcover, we investigated the biasing impact 
of changes in forest cover and building activities (Kempf, 2020a). 
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To test the biasing influence of these factors, we broke each one into discreet 
categorical variables, shown in table 1. For each variable, we used the chi-square 
test to determine if archaeological sites were over- or under-represented in areas 
characterized by that variable as compared to the rest of the study area. Variables 
with a p-value less than 0.05 were considered significant. The biasing influence 
of these variables was quantified by dividing the observed number of sites by 
the number expected under conditions of complete spatial randomness. Variables 
with a p-value greater than 0.05 were given a weight of 1. All weights were then 
rescaled to fall between 0 and 1 to create a bias surface that could be used to 
generate a biased set of comparison points (Tab. 3).

Table 1
Variables containing all the bias factors

Land cover class Area (ha) Area (%) Sites Sites(%)

Arable land 136941 27.95% 884 36.91%

Artificial surfaces 61382 12.53% 838 34.99%

Forests 203726 41.58% 347 14.49%

Heterogeneous agricultural areas 40498 8.26% 198 8.27%

Open spaces with little or no vegetation 148 0.03% 0 0.00%

Pastures 18754 3.83% 53 2.21%

Permanent crops 15167 3.10% 62 2.59%

Scrub and/or herbaceous vegetation 
associations 7922 1.62% 6 0.25%

Water bodies 5156 1.05% 7 0.29%

Wetlands 317 0.06% 0 0.00%

Forest class Area (ha) Area (%) Sites Sites(%)

afforested 5174 1.06% 21 0.88%

deforested 101054 20.62% 435 18.17%

forest 198552 40.52% 326 13.62%

not forest 185229 37.80% 1612 67.34%

built class Area (ha) Area (%) Sites Sites(%)

cleared 15029 3.07% 93 3.88%

never built 413596 84.41% 1464 61.13%

new built 48625 9.92% 464 19.37%

still built 12757 2.60% 374 15.62%
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Our analysis of modern landcover relies on Corine Land Cover (CLC, https://
land.copernicus.eu/pan-european/corine-land-cover/clc2018, last accessed 
18th of December 2022) data from 2018 (100 m resolution) with the addition of 
roads from Open Street map data (OSM, Geofabrik GmbH, last accessed 24th of 
August 2020). CLC data are described using a three-level hierarchy of labels. For 
most land cover classes, we used the most general description, but “Agricultural 
areas” and “Forest and semi natural areas” included second-level categories 
with very different implications for site discovery. “Arable land,” for example, 
is plowed every year and is therefore more likely to produce surface sherds 
than “Permanent crops.” Similarly, “Forests” are more likely to obscure remains 
than “Scrub and/or herbaceous vegetation associations.” For these areas, then, 
the second-level label was used. The CLC data does not include roads, so we 
added these by calculating a 2 m buffer around lines representing roads and 
combining the resulting polygon with the “Artificial surfaces” polygon of the 
CLC. To understand the role of deforestation, we compared the forested areas 
represented in our modified CLC data to forest cover from 1972, which were 
taken from previously processed landcover data  (Kempf, 2020c), classifying the 
landscape into areas that were consistently forest, never forested, deforested, and 
afforested. Changes in the built-up area were analyzed by comparing the artificial 
surfaces represented in our modified CLC data to the built-up areas represented 
on historical maps from 1866 augmented with a 100 m buffer (see Tab. 1 for bias 
factors). 

In order to achieve a holistic understanding of the relationship between 
modern land cover, changes in forest cover, and changes in the built-up areas, 
we combined all three factors into a single, multivariate bias surface with 39 
composite variables that represented unique combinations of variables from 
each factor (see Tab. 2 for variables included in the bias surface). Many of these 
covered too little area to be statistically analyzed, so these were combined with 
closely related variables to arrive at 22 composite variables. Many of these small 
variables included land that had been cleared of buildings. These were combined 
with similar areas that had never been built up. In addition, areas of wetland were 
combined with water bodies and open areas were combined with areas of scrub.

Table 2
Variables included in the bias surface

O r i g i n a l 
c o m p o s i t e 

variable

Ori. Var. 
Area (ha)

New 
composite 
variable

New area 
(ha)

New area 
(%)

Sites Sites (%)

Arable land-
cleared_built-

deforested

552

Arable land-
never_built-
deforested

19202 3.92% 71 2.95%

Arable land-
n e v e r _ b u i l t -

deforested

18651 19202 3.92% 71 2.95%
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Arable land-
cleared_built-

not forest

3219 Arable land-
cleared_built-

not forest

3219 0.66% 35 1.46%

Arable land-
never_built-not 

forest

114515 Arable land-
never_built-

not forest

114515 23.39% 778 32.38%

A r t i f i c i a l 
s u r f a c e s -
n e w _ b u i l t -

deforested

19643 Artificial 
surfaces-

new_built-
deforested

19643 4.01% 124 5.16%

A r t i f i c i a l 
surfaces-new_
built-not forest

28981 Artificial 
surfaces-

new_built-not 
forest

28981 5.92% 340 14.15%

A r t i f i c i a l 
s u r f a c e s -
s t i l l _ b u i l t -

deforested

4775 Artificial 
surfaces-

still_built-
deforested

4775 0.98% 81 3.37%

A r t i f i c i a l 
surfaces-still_
built-not forest

7982 Artificial 
surfaces-

still_built-not 
forest

7982 1.63% 293 12.19%

F o r e s t s -
cleared_built-

afforested

141

Forests-
never_built-
afforested

5166 1.06% 21 0.87%

Forests-never_
built-afforested

5025

F o r e s t s -
cleared_built-

forest

5129 Forests-
cleared_built-

forest

5129 1.05% 15 0.62%

Forests-never_
built-forest

193411 Forests-never_
built-forest

193411 39.51% 311 12.94%

Heterogeneous 
a g r i c u l t u r a l 
a r e a s -
cleared_built-

deforested

1851 Heterogeneous 
agricultural 

areas-
cleared_built-

deforested

1851 0.38% 11 0.46%

Heterogeneous 
a g r i c u l t u r a l 
areas-cleared_
built-not forest

757

Heterogeneous 
agricultural 
areas-never_

built-not forest

17116 3.50% 113 4.70%

Heterogeneous 
a g r i c u l t u r a l 
areas -never_
built-not forest

16359

Heterogeneous 
a g r i c u l t u r a l 
a r e a s -
n e v e r _ b u i l t -

deforested

21528 Heterogeneous 
agricultural 

areas-
never_built-
deforested

1851 0.38% 11 0.46%
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Open spaces 
with little or 
no vegetation-
cleared_built-

deforested

0

Scrub and/
or herbaceous 

vegetation 
associations-
never_built-
deforested

7146 1.46% 5 0.21%

Open spaces 
with little or 
no vegetation-
n e v e r _ b u i l t -

deforested

134

Open spaces 
with little or 
no vegetation-
never_built-not 

forest

14

Scrub and/
or herbaceous 
v e g e t a t i o n 
associat ions-
cleared_built-

deforested

450

Scrub and/
or herbaceous 
v e g e t a t i o n 
associat ions-
n e v e r _ b u i l t -

deforested

6561

P a s t u r e s -
cleared_built-

deforested

1548 Pastures-
cleared_built-

deforested

1548 0.32% 8 0.33%

P a s t u r e s -
cleared_built-

not forest

196 Pastures-
never_built-

not forest

4062 0.83% 15 0.62%

P a s t u r e s -
never_built-not 

forest

3866

P a s t u r e s -
n e v e r _ b u i l t -

deforested

13142 Pastures-
never_built-
deforested

13142 2.68% 30 1.25%

P e r m a n e n t 
c r o p s -
cleared_built-

deforested

664

Permanent 
crops-

never_built-
deforested

8520 1.74% 29 1.21%

P e r m a n e n t 
c r o p s -
n e v e r _ b u i l t -

deforested

7857

P e r m a n e n t 
crops-cleared_
built-not forest

395

Permanent 
crops-never_

built-not forest

6646 1.36% 33 1.37%

P e r m a n e n t 
crops-never_
built-not forest

6251
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Scrub and/
or herbaceous 
v e g e t a t i o n 
associat ions-
cleared_built-

not forest

26

Scrub and/
or herbaceous 

vegetation 
associations-
never_built-

not forest

922 0.19% 1 0.04%

Scrub and/
or herbaceous 
v e g e t a t i o n 
associat ions-
never_built-not 

forest

882

W e t l a n d s -
cleared_built-

deforested

17

Water bodies-
never_built-
deforested

3691 0.75% 2 0.08%

W e t l a n d s -
n e v e r _ b u i l t -

deforested

162

Water bodies-
cleared_built-

deforested

53

Water bodies-
n e v e r _ b u i l t -

deforested

3459

W e t l a n d s -
cleared_built-

not forest

2

Water bodies-
never_built-

not forest

1775 0.36% 5 0.21%

W e t l a n d s -
never_built-not 

forest

135

Water bodies-
cleared_built-

not forest

26

Water bodies-
never_built-not 

forest

1612

The results of the chi-square tests and the weights of bias are shown in 
table 3. These values were used to create a bias surface raster with a resolution 
of 5 m. We then used the “Create Spatially Balanced Points” tool in ArcGIS Pro 
2.5 to generate 10000 biased random points, or one point for every 49 ha in the 
study area. Because they are not evenly distributed the average nearest neighbor 
distance is 340 m. Our basic unit of analysis is a circle with a 1500 m radius (see 
below). so given the scale of analysis, these points are a good representation of 
the background environment. The maps were partly created in QGIS 3.22.4 and R 
software 4.2.1 (Fig. 3).



 
Michael Kempf y Elis J. S. Weaverdyck

Vegueta, 23 (1), 2023, 57-95. eISSN: 2341-1112 71

Table 3
Results of the chi-square test and weights used for the bias surface

Composite variable P-value Observed

/ expected

Weight
Rescaled 
weight

Water bodies-never_built-
deforested 0.00015 0.11085 0.11085 0.01476

Scrub and/or herbaceous 
vegetation associations-never_built-
deforested 0.00000 0.14300 0.14315 0.01906

Forests-never_built-forest 0.00000 0.32900 0.32896 0.04381

Pastures-never_built-deforested 0.00001 0.46700 0.46702 0.06219

Forests-cleared_built-forest 0.04320 0.59833 0.59833 0.07968

Permanent crops-never_built-
deforested 0.04803 0.69632 0.69632 0.09273

Heterogeneous agricultural areas-
never_built-deforested 0.00185 0.70321 0.70321 0.09364

Arable land-never_built-deforested 0.01607 0.75644 0.75644 0.10073

Scrub and/or herbaceous 
vegetation associations-never_built-
not forest 0.09831 0.22194 1.00000 0.13317

Water bodies-never_built-not forest 0.21096 0.57614 1.00000 0.13317

Pastures-never_built-not forest 0.27377 0.75542 1.00000 0.13317

Forests-never_built-afforested 0.39497 0.83162 1.00000 0.13317

Permanent crops-never_built-not 
forest 0.92773 1.01581 1.00000 0.13317

Pastures-cleared_built-deforested 0.87504 1.05708 1.00000 0.13317

Heterogeneous agricultural areas-
cleared_built-deforested 0.51610 1.21545 1.00000 0.13317

Artificial surfaces-new_built-
deforested 0.00356 1.29144 1.29144 0.17198

Heterogeneous agricultural areas-
never_built-not forest 0.00110 1.35063 1.35063 0.17986

Arable land-never_built-not forest 0.00000 1.39000 1.38990 0.18509

Arable land-cleared_built-not forest 0.00000 2.22000 2.22415 0.29618

Artificial surfaces-new_built-not 
forest 0.00000 2.40000 2.40011 0.31962

Artificial surfaces-still_built-
deforested 0.00000 3.47000 3.47046 0.46215

Artificial surfaces-still_built-not 
forest 0.00000 7.50937 7.50937 1.00000
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Figure 3. Accumulated bias surface, modern infrastructure, built-up, forest and cropland 
in the study area (CLC 2018).

2.4. Environmental data components and preprocessing

A broad set of environmental covariates was chosen for the analysis, mostly 
based on physical parameters. We determined elevation and slope, the hydrologic 
system, and soil properties to best represent a suitability package of land-use 
strategies. This set-up is, however, subjective and can be defined differently – 
depending on the geographical location of the study area or the desired outcome 
of the analysis. Site preferences in flat areas, for example, would not be controlled 
by slope gradients but rather by total elevation, groundwater depth, and flooding 
vulnerability, whereas mountainous regions would rather include water access, 
slope gradient, and erosion potential. Eventually, latitude and mean elevation 
of the study area control climate feedbacks and hence suitability for agriculture. 
In this case study and due to the location in Central Europe and a moderate 
temperate climate zone (Cfb after Koeppen and Geiger). we conclude that water 
access and topography in combination with soil properties best predict landscape 
preferences of premodern cultural groups. 

With the exception of distance to water (1000 m). we measure the relationship 
of settlements to environmental variables by quantifying the prevalence of each 
variable within a fixed neighborhood around the settlement. Based on the work of 
Chisholm, we have chosen 1500 m as the radius for our neighborhood (Chisholm, 
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1979 (2007)). These neighborhoods frequently overlap, but for our purposes, this 
is appropriate. The 1.5 km neighborhood represents the land that could have been 
intensively cultivated from a settlement. Given the coarseness of chronological 
data, contemporaneity of settlements is impossible to assume, and even when 
settlements were contemporary, the practice of short-term tenancy and other 
systems of land allocation mean that the same field could have been cultivated 
sequentially by people living in different settlements.

2.4.1. Elevation data

Elevation data (digital elevation model, DEM) come from the Shuttle Radar 
Topography Mission (SRTM) 1 arc-second global dataset. We chose SRTM data 
to facilitate replicability of the analysis in different regions using different point 
patterns. The DEM provides information about absolute elevation and was used 
to calculate slope. The data was resampled to a 100 m grid cell resolution and 
fuzzified using a circular neighborhood of r=15 cells (that is a total of 31 cells, 
including the central cell, which equals 1500 m radius of the analysis). We focus 
on absolute height, impacting temperature and precipitation regime as well 
as slope gradient, which is decisive for settlement and cropland development. 
Furthermore, we estimated the aspect within the catchment due to the fact that 
the general aspect of the Vosges mountains and the foothill area is facing east 
(Fig. 1).

2.4.2. Hydrologic system

Access to fresh water is critical for biological sustenance, but the actual 
influence of water on people’s behavior varies depending on its availability and 
characteristics. We measured access to water by calculating Euclidean distance to 
streams, as represented in the European Environment Agency’s Catchments and 
Rivers Network System (ECRINS, https://www.eea.europa.eu/data-and-maps/
data/european-catchments-and-rivers-network, last accessed, 16th of February 
2022). These stream segments were generated using hydrological modeling of a 
DEM with a resolution of 100 m. The data are, therefore, rather coarse. However, 
given the extensive hydrological interventions experienced by the Alsace in 
modern times, they are probably a closer representation of ancient hydrology 
than data representing the current hydrological system. 

The dataset has another advantage built-in, which is the Strahler order 
number. Using this categorization, we subset each stream by rank in the network 
with 1 = smallest headwater in the catchment and 8 = river Rhine. For this reason, 
we buffered the bounding box by 500 m to integrate the river Rhine in its full 
extent (the river is the political border between France and Germany). Then, 
each Strahler order number river segment was buffered individually to create 
river network polygons. The following classification was chosen to best fit the 
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physiological conditions: 1=2 m, 2=3 m, 3=7.5 m, 4=10 m, 5=12.5 m, 6=15 m, 7 and 
8 = 100 m buffer radius. This accounts for the changing run-off characteristics in 
the different parts of the catchment. Eventually, all polygons were merged, and 
a binary streamflow raster was produced with watercourse =1 and no water = 0 
value. Raster grid resolution was set to moderate resolution (ncols = 7k, nrows 
= 7k, which results in 10.44086 m x 17.31143 m) to preserve the small-scale river 
matrix and to reduce computational time. Eventually, the raster was fuzzified 
using the above described method and a radius of 1000 m. The computational time 
increases rapidly with increasing resolution and we used the terra package for this 
operation due to advantage in computational speed (Hijmans, 2022). The focal 
approach has been conducted using the focalWeight function in the raster package 
and focal in terra. We chose a radius of 1000 m for the water access calculation 
to emphasize the stronger dependencies on running freshwater. On the other 
hand, the distance to river can be biased by just implying superficial run-off. 
Hence, we integrated aquifer depth into the data analysis, which in turn provides 
information about flooding potential and waterlogged soil conditions. The depth 
of the aquifer was modeled by interpolating the results of 327 cores using raw 
data from Aprona (https://www.aprona.net/, last accessed 25th of August 2020) 
(Kempf, 2020c). Groundwater table data was then interpolated across the study 
area using IDW interpolation and a raster grid cell of 100 m. Eventually, the raster 
was cropped to the extent of the study area and fuzzified using a radius of 1000 
m (Fig. 4).
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Figure 4. Groundwater table model for the study area (left) and visualization of the buffered 
and fuzzified river system using the Strahler order numbers 1-8 (right).

2.4.3. Soil data

Soil data, with a scale of 1:250,000 come from l’Association pour la Relance 
Agronomique en Alsace (ARAA) (https://www.datagrandest.fr/geoserver/araa/
wfs, last accessed 04th of October 2022). From this dataset, we could identify 9 
different classes that build the basis for soil characteristics, such as soils developed 
on crystalline rocks or alluvial sediments. The vector data was subset for each soil 
class, aggregates, unified, rasterized and eventually fuzzified with 1500 m radius. 
Consequently, every cell is the average value of a circle with 1500 m around the 
cell and thus represents soil quality within the catchment for each archaeological 
site (Fig. 5). The soil characteristics and reclassifications are described in Tab. 
4. The soils were classified based on water storage capacity of the underlying 
geological units (e.g., loess soil (high) vs. Quaternary gravel (low)). Chemical 
attributes related to soil quality of the weathering material are further considered 
(e.g., sandstones rather leading to acidic and shallow soils). Crystalline and 
metamorphic bedrock of the Vosges mountain ranges are producing acidic 
and less fertile soils and are thus considered less favorable for extensive crop 
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production – despite the fact that a generalization across long-standing human 
occupation is critical (Koerner et al., 1997).

Figure 5. Soil characteristics in the study area (left). reclassified raster based on soil 
suitability (class ranges from 1 = low to 5 = high) (center). and focal/fuzzy soilscape with 

r=1500 m (right).

Table 4
Soil characteristics and reclassification according to potential productivity (1= low, 5=high). 

Acidic soils of the crystalline bedrock and soils developing over sandstones can be considered of 
poor productivity. Alluvial soils and soils on loess deposits show high productivity

Subset Characteristic reclass

sub1 Crystalline bedrock 1

sub2 Metamorphic bedrock 1

sub3 Carbon-rich 4

sub4 Marly limestones, loess 3

sub5 Limestones, marl 3

sub6 Sandstone 2

sub7 Unconsolidated sediments 3

sub8 Loessic, carbonate-rich 
sediments

5

sub9 Volcanic bedrock 4
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2.5. Formal analyses

All formal analyses in this paper have been conducted using R software. 
The codes underlying the analysis of this paper were adapted from Kempf and 
Günther (2023) and are available from https://zenodo.org/record/7307543 
(Kempf and Günther, 2023). The rbias package can be downloaded from https://
zenodo.org/record/7071418 (Günther et al., 2022).

2.5.1. Complete spatial randomness

Complete Spatial Randomness (CSR) and clustering processes were checked 
using Ripley’s inhomogeneous K-Function (Ripley, 1977). This function allows for 
the detection of clustered points, regular point pattern, or spatial randomness 
(Bevan and Conolly, 2006; Crema et al., 2010). With this function the spatial 
properties of a point pattern can be analysed. The function in a Monte-Carlo-
Simulation evaluates whether the observed point pattern is different from a 
theoretical distribution (tested many times against a random comparison dataset) 
or if they are drawn from the same (random) sample. We included all archaeological 
sites and the comparison (random) data into the analyses to visualize the effects 
(Fig. 6). The output is a graph with a so-called Poisson distribution, in which the 
grey area (envelope) describes the Min/Max of a potential random distribution, 
a black line that represents the observed distribution, and a red line with the 
potential mean distribution. If the black line is located above the envelope, 
clustered behavior is evident, if it falls into the envelope, CSR is established 
(Nakoinz and Knitter, 2016). 

Eventually, a Kernel Density Estimation (KDE) can be derived, which 
represents site intensity as a function of the underlying distribution at certain 
radius of a kernel placed on top of the sites locale (O’Sullivan and Unwin, 2010). 
All calculations were performed using the spatstat package (version 2.3-4) in R 
(https://cran.r-project.org/web/packages/spatstat/index.html, last accessed 
03rd of October 2022) (Baddeley et al., 2016; Baddeley and Turner, 2005) (Fig. 6, Fig 
7). 
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Figure 6. Results from the K-function for all four point patterns. The outcome of the 
random point pattern visualizes a random distribution of the points. The archaeological 

sites, however, show clustered behavior.
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Figure 7. KDE for the archaeological sites using a sigma of 7500 m within the boundary 
of the study area. The KDE identifies three major clusters for each time period. The site 

intensity changes between the clusters due to different sample size.

2.5.2. Environmental preference model

There are a great many approaches to model landscape or environmental 
feature preferences using archaeological point data, ranging from site-based and 
2-dimensional approaches to catchment and complementary region analyses 
(Brandolini and Carrer, 2021; Kempf, 2021; Laabs and Knitter, 2021). In general, 
the site-based or point-based approach can be regarded as less meaningful 
because it only provides information about the very locale of a site – a concept, 
which can be considered to be of methodological uncertainty. A site rather 
represents a polygon with fuzzy margins than a two-dimensional entity. Hence, 
the integration of the environmental or socio-cultural complexity within the 
complementary area to a site offers far more valuable information regarding 
settlement or agricultural potential of a region. However, what best describes the 
complementary region is related to the size of the settlement or the dwelling, the 
population density, network and market integration, political or administrative 
centrality, and also cultural and religious significance. Eventually, the radius of 
a proper catchment area to a site is subject to the research goals and approaches 
and cannot be generalized. 

Here, we deploy the rhohat function, implemented in the spatstat package in 
R (Baddeley and Turner, 2005). The function itself does not use a specific radius 
as complementary area around one site. However, we use a focal approach to 
integrate the spatial components in a fixed neighborhood to gain knowledge about 
the environmental parameters within a circular surrounding. For this reason, we 
use a nearest neighbor analysis where every cell of an underlying explanatory 
raster (e.g., a digital elevation model) is the average of the surrounding cells 
within a circle of 1500 m. This allows to understand site preferences that take into 
account the catchment compositions instead of just point-based data information 
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(Carrero-Pazos et al., 2019; Kempf, 2021).
Eventually, rhohat calculates site intensity as a function of the pre-processed 

focal raster data. With this approach, we can visualize the effect of attraction 
or repulsion given by a specific parameter – the environmental raster. The 
environmental covariate can further be interpreted as an explanatory variable for 
site location preferences and avoidance regarding the catchment composition in 
the custom neighbourhood. According to Baddeley et al. (2016, 180), “the plot 
method generates a plot of the estimated function 𝜌𝜌 (𝑧𝑧) against covariate values 
z, together with 95% confidence bands assuming an inhomogeneous Poisson point 
process” (Baddeley et al., 2016). This means that we can estimate the correlation 
between site intensity and variable in a 95% confidence envelope (Baddeley et al., 
2012).

2.5.3 Bias model using rbias

To test the performance of the bias surface, the recently developed R-package 
rbias (Günther et al., 2022) has been used to compare the results of the Rhohat 
function within spatstat and the output of rbias. Basically, the package uses 
data from OpenStreetMap (OSM) and features characterized by the classes 
“residential”, “industrial”, “commercial”, and “retail” (modern land-use) as well 
as features tagged with the classes “motorway”, “motorway_link”, “primary”, 
“primary_link”, “secondary”, “secondary_link” to map the major road network, 
and features marked as “rails” to represent railways. To smooth the harsh 
boundaries of the OSM features, the package uses fuzzy variables and the R 
package FuzzyLandscapes (Hamer and Knitter, 2018). Consequently, the impact 
of modern infrastructure on the archaeological sites can be modelled at different 
ranges. We use ranges of 1000 m for our analysis. A range of 1000 m implies that a 
modern object’s impact is limited to a radius of 1000 m. Thus, archaeological sites 
located at the same location as the object are potentially heavily biased. Therefore, 
they are assigned a membership degree of 1. The bias or the membership degree 
decreases with an increasing distance until it drops to 0 at distances of 1000 m or 
more.

3. RESULTS AND DISCUSSION

In the following the results from the rhohat functions will be presented, 
followed by the bias surface model and a comparison to the recently developed 
rbias package. From the rhohat plots, a certain preference for particular 
environmental components can be observed. The x-axis represents the observed 
sites (black tickmarks) at particular values of the explanatory raster and the y-axis 
is the site intensity. The envelope characterizes 95% confidence level.
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3.1. Landscape preferences

3.1.1. Topography

First, the data has been analyzed for topographic preferences, including 
elevation, slope, and aspect (Fig. 8). From the plots, there is not much difference 
between all archaeological chronologies, indicating a preference for low-lying 
locations up to 400 m (pre-Roman). up to more than 500 m (Roman). and up to 700 
m (post-Roman). However, the site intensity is largest at low values with a narrow 
confidence interval. No sites are located at very low values, which is due to the 
general absolute height above sea level of the study area. The comparison dataset 
shows equally distributed sites with a focus on 200-300 m. This is in contrast to 
the post-Roman sites, which show a concentration below 200 m, followed by a 
steep drop-off as elevation values rise. The use of biased comparison data allows 
us to conclude that the initial spike is likely a result of biasing factors, but that the 
drop-off indicates a real aversion to lower elevations in the post-Roman period. 
This preference is a combination of multiple factors of the study area, which are 
composed of high soil quality of the lowlands and foothill area, climate suitability, 
and forest cover. The slight increase in elevation during the post-Roman period 
can probably best be explained by increasing land-use in the mountains, including 
forest management and mining activities as well as spread of Christianity and the 
establishments of monasteries. 

Figure 8. Topographic preference model of Pre-Roman, Roman, and Post-Roman sites 
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compared to a biased comparison dataset. From top: absolute elevation, slope, and aspect. 
The input DEM has been resampled to 100 m grid size and was fuzzified using a 1500 
m radius around each cell. The x-axis represents the observed sites (black tickmarks) at 
particular values of the explanatory raster and the y-axis is the site intensity. The envelope 

characterizes 95% confidence level.

The picture changes when considering slope into the analysis. Pre-Roman 
sites are mostly located in flat areas or areas including gentle slopes. Roman 
and particularly post-Roman sites show increasingly sloping landscapes in their 
complementary regions of 1500 m. Potentially, this is again reflecting different 
land-use approaches and particularly landscape availability at earlier periods and 
more intensification in later periods. Comparison data shows equally distributed 
sites with no preferences. The aspect further plays a decisive role in pre-Roman 
site location. Although the plot in figure 8 shows relatively even preferences for 
most aspects, with a slight preference for east facing slopes, the comparison data 
reveal that this is not what one would expect from a random distribution. The 
comparison data show that the topography of the study area, when archaeological 
bias is taken into account, has more southeast facing slopes and fewer west 
facing slopes. Therefore, the apparent pre-Roman indifference to these aspects 
is actually evidence for a non-random response. Roman sites are equally facing 
south and south-west, with a broader spectrum of distribution. Post-Roman sites 
in principle follow that distribution. The patterns are most likely generated by 
the general south-west facing of the foothill areas, which are nowadays intensely 
used for growing high quality wines. 

Compared to the biased random point distribution of the comparison data, 
all archaeological sites show particular site location patterns, which emphasized 
that they are not randomly distributed in the landscape. Low-lying, south-west 
facing slopes and flat areas were preferred and high altitudes and steep slopes 
generally avoided, which makes physiological sense, considering agricultural 
crop production in the very fertile region of the URA.

3.1.2. Hydrologic system

Two explanatory rasters were included into the analysis, the groundwater 
model and the Strahler order river network (Fig. 9). The groundwater model 
reveals insights into the use of floodplain areas of the river Rhine tributaries. The 
comparison data shows that many locations are characterized by a very shallow 
water table and possibly significant number of locations are characterized by a 
deep water table (the peak to the right of the graph). with a fairly even distribution 
of locations with moderate depths. In contrast, the pre-Roman sites show no peak  
at the right side of the graph, indicating the avoidance of areas with a very deep 
water table, unlike the Roman and Post-Roman sites. Upwelling groundwater 
of the aquifer and heavy rainfall can lead to persistent flooding of the so-called 
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‘Ried’ in the Alsace (Kempf, 2019b, 2020c), but the similarities observed between 
archaeological sites and the comparison data at low values of groundwater depth 
means that we cannot observe any archaeological response to this danger.

We do observe differences between archaeological sites and comparison data 
in terms of river water availability. The comparison data is evenly distributed, but 
archaeological sites from all periods are concentrated at low values, indicating 
greater access to river water. 

Figure 9. Results from the groundwater model (upper part) and Strahler order river network 
(lower part). The x-axis represents the observed sites (black tickmarks) at particular values 
of the explanatory raster and the y-axis is the site intensity. The envelope characterizes 95% 

confidence level.

3.1.3. Soil units and characteristics

The focal soils were reclassified into 5 groups, regarding their general 
suitability for agriculture and/or settlement spot (Fig. 10). The soil development 
in the study area is strongly connected to the elevation, thus representing low-
quality soils over crystalline bedrock of the central mountain range and rather 
fertile and highly productive soils in the plain and on top the foothill zone. The 
comparison data shows a fairly even distribution of locations across soil quality 
values, which matches the distribution of Roman and post-Roman sites, but 
Pre-Roman sites are concentrated on soils of higher quality. Therefore, we can 
conclude that Pre-Roman sites were located to take advantage of the most fertile 
soils, but Roman and post-Roman sites were not.
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Figure 10. Results from the soil quality model for each archaeological site and comparison 
data. Higher values indicate high quality (x-axis). The x-axis represents the observed sites 
(black tickmarks) at particular values of the explanatory raster and the y-axis is the site 

intensity. The envelope characterizes 95% confidence level.

3.1.4. Bias model 1: bias surface

We used the bias surface to estimate the impact of modern land-use, 
deforestation, infrastructure, and built-up change on the archaeological record. 
This comprehensive bias surface takes into account the chronological development 
of the study area during the past decades and thus represents a robust method to 
evaluate the influence of “findability” caused by increasing human permeability 
on the archaeological record in general. We resample the very detailed bias 
surface to a 10 m resolution and used a focal approach of r=250 m to best predict 
the influence of modern land-use. Eventually, the plots (Fig. 11) show that pre-
Roman sites are less biased than Roman sites and both are less biased than post-
Roman sites. With younger age, the impact of modern land-use gets stronger – 
which is reasonable in a cultural landscape that shows multiple high medieval 
and medieval village cores, a long-standing Roman history, and strong modern 
reshaping related to building activity and agriculture.

Figure 11. Bias surface rhohats for all archaeological sites and comparison data. The x-axis 
represents the observed sites (black tickmarks) at particular values of the explanatory 
raster and the y-axis is the site intensity. The envelope characterizes 95% confidence level.
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3.1.5. Bias model 2: rbias

The R package rbias was used to compare the results from the custom bias 
surface to an automatically produced bias surface. The package can be customized 
with different input variables, according to cell size and extent of the bias surface. 
Here, the fuzzy bias influence range was set to range = c(1e-2, 1, 2.6e-1, 0) with a 
cell size of 500 m and a xyrange = c(0, 1000). This produces the following plots, in 
which the archaeological site distribution was plotted against a n=999 simulation 
of random points. We can see that for pre-Roman sites, the random distribution 
lies above the observed site frequency for very small values, which means that 
we should expect more random sites with no bias than actually apparent. At high 
values, the observed sites lie over the simulated distribution, which means that 
more sites are biased within 1000 m than expected in the simulation. That is true 
for all sites, including the comparison data (that is not random but equally biased). 
Hence, we can detect bias for all archaeological features in the study area (Fig. 12).

Figure 12. rbias covariates characteristcs for all archaeological sites and comparison data. 
Solid line: known points; dashed line: median of random points; shaded area: confidence 

intervals (5%, 95%).

3.2 Landscape development and impact on site distribution

Our study area encompasses a region of the Upper Rhine that formed part 
of the Roman frontier zone from the end of the first century BCE through the 
fifth century CE. The presence of thousands of Roman soldiers and political 
integration with the Mediterranean set this period apart from the pre-Roman and 
post-Roman periods. In particular, military demand is thought to have increased 
agricultural production. There are, essentially, two ways to increase agricultural 
production: extensification, the cultivation of more land, or intensification, the 
investment of more labor and resources in each unit of land. In the Roman Rhine 
frontier zone, there is evidence for both. Paleobotanical remains of new plants 
and faunal remains showing livestock improvement have been interpreted as 
evidence for intensification, while the harvesting of spelt with famous “Gallic 
reaper” only makes sense in the context of extensive agriculture. Eventually, 
soil quality and availability are primary control factors for the development of 
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prosperous land-use.
Soil texture and chemical and physical soil composition varies significantly 

in the Upper Rhine Area and particularly from the Palaeozoic Vosges mountains 
and the Mesozoic foreland to the Quaternary floodplain, which is mostly 
characterized by gravel and sandy alluvial deposits. The soil development during 
the Holocene is tied to the underlying geological conditions, hydrological erosion 
and accumulation, and eventually climate fluctuations during the past 11,500 
years. The very fragmented geomorphology in the study area has led to mosaic 
soil conditions with patchy surface characteristics and locally heterogeneous soil 
thickness, composition, grain size, and drainage potential. Hence, the extensive 
agricultural exploitation, which dominates modern land-use, cannot be assumed 
for prehistoric periods without considering local differences in soil quality and 
potential yield quantities. In this context, loess coverage is often assumed to be 
the first choice for agricultural exploitation (Kempf, 2018). In the study area, broad 
parts of the Quaternary sediments and the Mesozoic forelands are covered with 
loess or secondary relocated loess deposits, which derived from Pleistocene aeolian 
transport and subsequent sedimentation (Antoine et al., 2001; Antoine et al., 2016; 
Froehlicher et al., 2016; Lehmkuhl et al., 2016). The primary loess-covered areas, 
however, feature further location parameters, which are strongly interrelated. 
Most of the aeolian sediment is trapped by vegetation and topographic obstacles. 
Hence, landscape roughness of the floodplain plays a major role in the deposition 
processes of loess in the study area. The slightly elevated Mesozoic outcrops 
and plateaus are further situated outside the flood prone areas of the prehistoric 
meandering and anastomozing river Rhine hydrologic system (Preusser, 2008), 
which is characterized by frequent channel shifts during extreme run-off values 
and the input from the various tributaries that drain the Vosges mountain range 
(Rentzel et al., 2009). Heavy precipitation can cause rapid changes in headwater 
run-off patterns, which results in high-velocity washloads and extensive flooding 
events in the lower parts of the river Rhine and river L’Ill floodplain. The elevated 
areas of the floodplain are thus not only favorable in terms of flood security but 
also with respect to soil condition and drainage, which prevents harvest loss 
during early summer run-off maximum. 

The results from the spatial model reveal a strong preference of pre-Roman 
and Roman occupation of silty soils (loess, high suitability) and clear avoidance of 
sandy and clayey soils (low suitability). Sandy soils in the area are characterized 
by high drainage potential and low water storage capacity with rather acidic and 
semi-fertile soil composition. Clayey soils show strong waterlogging potential 
and heavy soil compositions, which are rather unsuitable without deep-plowing 
agricultural techniques. Furthermore, the sedimentation of fine-grained material 
is often accompanied with upwelling groundwater and local flooding events, 
which increases the risk of harvest loss (see Fig. 4, groundwater model). Scattered 
population dispersal in the pre-Roman periods would thus be linked to the 
favorable parts of the landscape. The subsequent Roman occupation shows a 
significant increase in settlement numbers, which are more homogeneously 
distributed in the URA (Fig. 2). During the Roman period, soil preferences change 
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slightly. This can be seen as a general trend in extensification of agricultural 
exploitation of the landscape during increased population dynamics and a 
general trend towards human presence in the URA - mostly related to military 
fortifications and the rural development of the local people during the 1st to the 
3rd century AD. In this context, the introduction of new agricultural crops like 
spelt and the technological enhancements through communication and transfer 
has led to an increase in yield production in the Roman administrative realm. 
A combination of stable climatic conditions during the early Roman period and 
the potentially non-extensive pre-Roman land-use strategies have further enabled 
the expansion of crop cultivation and eventually the utilization of most of the 
favorable and even the semi-favorable soils with the goal to maximize yield 
production. The continuous declining loess preferences during post-Roman land-
use aligns with the technological development of the turning plough in the Early 
Middle Ages, which allows for plowing deeper soils of the floodplain and the 
cultivation of rye - maybe as a reaction to disturbances in climate stability and a 
trend towards more humid conditions (Brombacher and Hecker, 2015; Büntgen et 
al l., 2016; McCormick et al., 2012). 

In this context, flooding susceptibility has been intensely discussed and a 
broad number of studies have pointed out the high flooding sensitivity of the 
URA (Giacona et al., 2018; Glaser et al., 2010; Martin et al., 2017; Wetter et al., 
2011). Extensive flooding is not only caused by a heavy precipitation events in 
the floodplain due to convective conditions during summer but also by long-
term precipitation in the mountain range, which causes drainage collapse of the 
soils and extreme discharge of the headwaters. The high groundwater table in 
the Alsace, which is to a large extent dependent on Alpine surface discharge 
and aquifer, locally amplifies the water saturation of the surface-near soil layers. 
The spiral-like amplification of fine-grained clayey and waterlogged deposits, 
high groundwater level, the hydrologic network, and increased precipitation 
during summer impacts the drainage potential of the soils and locally triggers 
soil textures and units, which cannot be utilized without heavy drainage activity. 
Furthermore, the massive channelization of the river Rhine and parts of the 
tributaries led to a general groundwater drop in the Upper Rhine aquifer. Taking 
into account the local differentiations of groundwater height and response to 
modern anthropogenic impact, the overall floodplain dynamics during the 
pre-Roman to post-Roman period can be assumed to be much more affected 
by periodical flooding and generally more humid conditions. This is not only 
affecting potential agriculture and settlement dynamics but also the accessibility, 
permeability and availability of local- to regional-scale landscape patches and 
resource exploitation like pastures or timber respectively. In addition, life-quality 
close to the marshy and swampy parts of the floodplain must have decreased 
rapidly due to potential malaria and fever hot spots, elimination of which was 
one of the side-effects of the floodplain correction during the 18th and 19th century. 

These general considerations of landscape development are visible in the 
land-use development from the pre-Roman Iron Age to the Roman Period (Fig. 
4). A moderate aquifer was preferred by pre-Roman land-use activity, which can 
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be linked to climate minimum and a general increase in precipitation at that time. 
In turn, artificial irrigation would not have played a major role in crop cultivation 
on loess-covered on flat and gentle slopes. In the Roman period, the availability 
of agriculturally utilizable soil patches on gentle slopes and in flat areas was still 
high, which allowed for continuous use and extensification of crop production 
during the first 4th to 5th centuries AD. The extensification towards lower parts of 
the floodplain is visible in the increasing density of sites in areas with a generally 
lower average elevation and particularly in the significant increase of sites in 
areas dominated by quaternary gravel and alluvial deposits and a decrease of site 
occupation on loess-covered, silty areas. Consequently, the drainage potential of 
the soils (not the geology) decreases rapidly from areas with low aquifer and silty 
aeolian deposits towards sandy and more clayey soil textures of the floodplain, 
which are furthermore characterized by higher groundwater availability. This can 
be a sign for technological development and the introduction of broad varieties 
of cereals, like spelt, or an increasing demand of agricultural cropland caused 
by massive increase of population and the presence of military activities at the 
borders of the Roman administration. The latter would explain the growing 
pressure of Roman land-use and population dynamics during the first centuries in 
the URA. In addition, Roman technological development led to the construction 
and maintenance of regional to supraregional infrastructural networks in the 
URA, which in turn supported the establishment of Roman villae, settlements, 
and market-oriented production units in close distance to accessible and stable 
routes and roads (Weaverdyck, 2019). Further amplified by the military presence 
of the Roman army, these pull-factors have caused a strong transformation of 
the landscape into a Roman cultural activity area, which is not only mirrored by 
geomorphological proxies like colluvial development (Lang et al., 2003; Mäckel 
et al., 2002; Mäckel et al., 2003), but also by vegetation change through clearing 
activity, mineral resource exploitation, and socio-political development of the 
local, peripheral society - on both side of the river Rhine. 

4. CONCLUSION

Spatial analysis in archaeological research covers a large variety of theoretical 
and methodical approaches and has established an individual debate. In this 
paper, we focus on the application of Point Pattern Analysis (PPA) to describe 
patterns in archaeological records across different chronological periods. We 
apply quantitative statistics and spatial modelling to understanding not only 
the environmental explanatory covariates that control settlement and land-use 
strategies, but also to evaluate the impact by modern infrastructural development 
in eastern France. Modelling pre-Roman, Roman, and post-Roman sites, we find 
that the modern impact by land-use and built-up change accounts for a certain bias 
in the distribution of sites. A custom-built bias surface that includes also historical 
surface development probably shows that Roman and post-Roman sites are more 
biased than pre-Roman site locations – pointing towards continuous land-use and 
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settlement development in the landscape since Roman times. The new R-package 
rbias, that generates a fuzzified bias surface using OSM data, however, points 
towards more biased archaeological records in general. On the other side, this is 
most likely caused by input variables and resolution of the underlying explanatory 
raster data. Eventually, we evaluated site preferences in archaeological data using 
the spatstat package in R and the implemented function rhohat. This function 
allows to understand site intensity as a function of a covariate. We used elevation, 
slope, aspect, groundwater table and hydrology as well as different reclassified 
soil characteristics to detect preferences in the landscape. We find that low lying 
areas with flat or gentle slopes on fertile soils were increasingly dominant during 
pre-Roman and Roman times. This changed at the transition to the Early Middle 
Ages and the Middle Ages in general, where different soil types and remote areas 
started to gain attraction. Most likely, this is due to technological developments 
in the region. 

The use of biased comparison data has allowed us to distinguish locational 
trends in the distribution of archaeological sites that are the result of actual ancient 
preferences from those that could be the product of discovery bias. There are 
multiple ways to identify and quantify this bias, and in the future, archaeologists 
should experiment with several in order to bolster the empirical basis of the 
conclusions they draw from point pattern analysis.
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